

R.P. Gogate College of Arts & Science and R.V. Jogalekar College of Commerce (Autonomous), Ratnagiri

Syllabus for
T. Y. B. Sc. Biotechnology Programme
Semester V and VI

Under Choice Based Credit System (CBCS)

To be implemented from the Academic Year

2023 - 2024

Name of Programme	B. Sc. Biotechnology		
Level	UG		
No. of Semesters	06		
Year of Implementation	2023 – 24		
Programme Specific	1. To impart skills in handling the cultures of micro – organisms.		
Outcomes (PSO)	2. To impart the knowledge of molecular biology techniques.		
	3. To impart the skills of Science communication.		
	4. To impart knowledge of society and make students aware about		
	the Problems in society.		
	5. To understand basic principles of research methodology and		
	identify a research problem.		
	6. To gain critical thinking and analytical skills to understand new		
	diagnostic methods.		
	7. To write a business plan.		
	8. To design strategies for successful implementation of ideas.		
Relevance of PSOs to the	Biotechnology is important at Global, Regional and local level. The		
local, regional, national,	significance of Biotechnology identified at all these levels and it is		
and global developmental	relevant to everyday life. The curriculum design of B. Sc.		
needs	Biotechnology programme helps in understanding various concepts		
	in detail. This programme includes hands on skills and knowledge of		
	the different techniques related to molecular biology, tissue culture,		
	basic chemistry and basic microbiology. This also involves the		
	knowledge of problems in society. The application part is taken care		
	of so that the learner shall be able to connect the phenomena around		
	him with the curriculum. This programme also imparts the research		
	values among the learners. The hard and softs skills acquired during		
	the completion of this programme shall make him employable.		

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40 % marks in the first part and by conducting the Semester End Examinations of 60 % marks in the second part.

Standard of Passing

The learner to pass a course shall have to obtain a minimum of 40% marks in aggregate for each course where the course consists of Internal Assessment & Semester End Examination. The learner shall obtain minimum of 40% marks (i. e. 16 out of 40) in the Internal Assessment and 40% marks in Semester End Examination (i. e. 24 out of 60) separately, to pass the course and minimum of Letter Grade "P" in the project component, wherever applicable to pass a particular semester. A learner will be said to have passed the course if the learner passes the Internal Assessment and Semester End Examination together.

Performance Grading: Letter Grades and Grade Points

Semester GPA/ Program CGPA Semester/Program	% of Marks	Alpha-Sign / Letter Grade Result
9.00-10.00	90.0 -100	0 (Outstanding)
8.00 ≤ 9.00	80.0 ≤ 90.0	A+ (Excellent)
$7.00 \le 8.00$	$70.0 \le 80.0$	A (Very Good)
$6.00 \le 7.00$	$60.0 \le 70.0$	B+ (Good)
5.50 ≤ 6.00	55.0 ≤ 60.0	B (Above Average)
5.00 ≤ 5.50	50.0 ≤ 55.0	C (Average)
4.00 ≤ 5.00	$40.0 \le 50.0$	P (Pass)
Below 4.00	Below 40	F (Fail)
Ab (Absent)	-	Absent

SMART Criteria for Course Outcomes:

Specific: Each course outcome is specific, outlining the knowledge and skills students are expected to acquire in relation to the specific topics covered.

Measurable: Each outcome can be measured through assessments, tests, or projects to determine the level of understanding and proficiency achieved by the students.

Achievable: The outcomes are achievable within the duration of the course, considering the number of lectures allocated to each topic.

Relevant: The outcomes are relevant to the subject of financial services and capital market, addressing important concepts, types, and mechanisms involved.

Time-bound: The outcomes are expected to be achieved by the end of the course, providing a clear timeline for assessment and evaluation.

Name of the Course	Cell Biology
Course Code	USBT501
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

CO1 - To impart the knowledge of cell cycle.

CO2 – To provide the insight of cell signalling.

CO3 – To gain the knowledge of developmental biology.

CO4 – To impart the knowledge of cancer biology.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Cell cycle	Cell cycle Introduction: Prokaryotic	15
		and Eukaryotic- 3 Lectures;	
		The Early Embryonic Cell Cycle	
		and the Role of MPF-4 Lectures;	
		Yeasts and the Molecular Genetics	
		of Cell-Cycle Control – 4 Lectures ;	
		Apoptosis, Cell-Division Controls	
		in Multicellular Animals- 4	
		Lectures	
II	Cell signalling	Cell signalling and signal	15
		transduction: Introduction General	
		Principles of Cell Signalling - 3	
		Lectures ; Signalling via G-Protein-	
		linked Cell-Surface Receptors - 3	
		Lectures; Signalling via Enzyme-	
		linked Cell-Surface Receptors - 3	
		Lectures; Target-Cell Adaptation,	
		The Logic of Intracellular - 3	
		Lectures ; Signalling: Lessons from	
		Computer-based "Neural	
		Networks"- 3 Lectures	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 5 | Page

III	Developmental	Overview of how the modern era of	15
	Biology	developmental biology emerged	
		through multidisciplinary	
		approaches - 5 Lectures ; Stages of	
		development- zygote, blastula,	
		gastrula, neurula cell fate &	
		commitment – potency- concept of	
		embryonic stem cells, differential	
		gene expression, terminal	
		differentiation ,lineages of three	
		germ layers, fate map - 6 Lectures;	
		Mechanisms of differentiation-	
		cytoplasmic determinants,	
		embryonic induction, concept of	
		morphogen, mosaic and regulative	
		development Pattern formation	
		axis specification, positional	
		identification (regional	
		specification), Morphogenetic	
		movements, Model organisms in	
		Developmental biology – 4	
		Lectures	
IV	Cancer Biology	Cancer: Introduction, Cancer as a	15
		Microevolutionary Process - 4	
		Lectures; The Molecular Genetics	
		of Cancer - 6 Lectures; Cancer and	
		Virus Cancer diagnosis and	
		chemotherapy - 5 Lectures	

- 1. Molecular Cell Biology. 7th Edition, (2012) Lodish H., Berk A, Kaiser C., K Reiger M., Bretscher A., Ploegh H., Angelika Amon A., Matthew P. Scott M.P., W.H. Freeman and Co., USA
- 2. Molecular Biology of the Cell, 5th Edition (2007) Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA
- 3. Cell Biology, 6th edition, (2010) Gerald Karp. John Wiley & Sons., USA
- 4. The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman, Sinauer Associates, Inc. USA
- 5. Developmental Biology; Scott Gilbert; 9th Edition

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

Question	Unit	Marks
No.		
1	I	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Medical Microbiology and Instrumentation	
Course Code	USBT502	
Class	T. Y. B. Sc.	
Semester	V	
No. of Credits	2.5	
Nature	Theory/ Practical/ Project/ other (please specify)	
Type	Core/ Elective	

Course Outcomes:

CO1 – To impart the knowledge of medical microbiology.

CO2 – To provide the insight of the various skills and instrumentation.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Virology	Introduction to viruses-Position in	15
		biological spectrum; Virus	
		properties - 2 Lectures;	
		General structure of viruses	
		Baltimore Classification and	
		Taxonomy (ICTV) - 2 Lectures;	
		Cultivation of viruses - 2 Lectures;	
		Reproduction of ds DNA phages	
		Hepatitis /ss RNA (influenza),	
		animal viruses and plant (TMV)	
		virus – 4 Lectures ;	
		Virus purification and assays - 2	
		Lectures; Cytocidal infections and	
		cell damage - 2 Lectures; Viroids	
		and Prions – 1 Lecture	
II	Chemotherapeutic	Discovery and Design of	15
	drugs	antimicrobial agents -1 Lecture;	
		Classification of Antibacterial	
		agents, Selective toxicity, MIC,	
		MLC – 2 Lectures	
		Inhibition of cell wall synthesis	
		(Mode of action for): Beta lactam	
		antibiotics: Penicillin,	
		Cephalosporins; Glycopeptides:	

	1	17 1 D.11	1
		Vancomycin; Polypeptides:	
		Bacitracin -2 Lectures	
		Injury to Plasma membrane:	
		Polymyxin – 1 Lecture ;	
		Inhibition of protein synthesis	
		Aminoglycosides, Tetracyclines	
		Chloramphenicol, Macrolides-	
		Erythromycin- 2 Lectures;	
		Inhibition of Nucleic acid synthesis:	
		Quinolones, Rifampicin,	
		Metronidazole - 2 lectures;	
		Antimetabolites: Sulphonamides,	
		Trimethoprim - 1 lecture;	
		Drug Resistance: Mechanism,	
		Origin and transmission of drug	
		_ =	
		resistance – 1 lecture;	
		Use and misuse of antimicrobial	
		agents - 1 lecture;	
		Antifungal drugs, Antiviral drugs –	
TIT		2 lectures	1.5
III	Spectroscopy	Principle, instrumentation, working	15
		and applications of: Fluorescence	
		Spectroscopy – 3 Lectures	
		Luminometry - 3 Lectures	
		Light scattering spectroscopy - 3	
		Lectures	
		Infrared Spectroscopy - 3 Lectures	
		Atomic absorption Spectroscopy - 3	
		Lectures	
IV	Bioanalytical	Principle, working and applications	15
	techniques	of: Affinity chromatography - 2	
	•	Lectures	
		Ion-exchange chromatography - 2	
		Lectures	
		Molecular (size) exclusion	
		chromatography - 2 Lectures;	
		HPLC - Method development and	
		validation- 3 Lectures;	
		Isotopes in Biology: Nature of	
		radioactivity - 1 Lecture;	
		Detection Techniques using GM	
		counter, Scintillation counter,	
		autoradiography - 4 Lectures;	
		Applications of Tracer techniques in	
		Biology - 1 Lecture	
1		Diology - I Lecture	

- 1. Principles and techniques in biochemistry and molecular biology (2010), Keith Wilson and John Walker, 7th edition, Cambridge University Press
- 2. Biophysics (2002) Vasantha Pattabhi and N. Gautham, Kluwer Academic Publishers
- 3. Physical Biochemistry: principles and applications, 2nd edition (2009), David Sheehan, John Wiley & Sons Ltd
- 4. HPLC method validation for pharmaceuticals: a review (2013), Harshad V. Paithankar, International Journal of Universal Pharmacy and Bio Sciences 2(4): July-August.
- 5. Mim's Medical Microbiology 5th edition
- 6. Microbiology by Prescott Harley and Klein 5th edition Mc Graw Hill
- 7. Medical Microbiology Jawetz, E., Brooks, G.E., Melnick, J.L., Butel, J.S. Adelberg E. A 18th edition
- 8. Medical Microbiology by Patrick Murray 5th edition
- 9. Foundations In Microbiology by Talaro and Talaro Third edition W.C Brown
- 10. Understanding Viruses by Teri Shors

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

Question No.	Unit	Marks
1	I	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Genomes and Molecular Biology
Course Code	USBT503
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

CO1 – To impart the knowledge of genetic engineering of plants and animals.

CO2 – To provide the skills in molecular biology tools, gene sequencing and editing.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Genetic engineering of	Genetic engineering of plants;	15
	plants	Methodology. Plant transformation	
		with the Ti plasmid of A .	
		tumefaciens, Ti plasmid derived	
		vector system - 4 Lectures;	
		Transgenic plants: Physical methods	
		of transferring genes to plants:	
		electroporation, microprojectile	
		bombardment, liposome mediated,	
		protoplast fusion- 5 Lectures;	
		Vectors for plant cells - 4 Lectures;	
		Improvement of seed quality protein	
		- 2 Lectures	
II	Transgenic animals	Transgenic mice- methodology-	15
		retroviral method, DNA	
		microinjection, ES method - 5	
		Lectures; genetic manipulation	
		with cre-loxP - 2 Lectures;	
		Vectors for animal cells − 2	
		Lectures;	
		Transgenic animals recombination	
		system – 2 Lectures;	
		Cloning livestock by nuclear	
		transfer – 2 Lectures; Green	

		Fluorescent Protein - 1 Lectures;	
		Transgenic fish – 1 Lectures	
III	Tools in molecular	Cloning vectors-Plasmids (pUC	15
111	biology	series), Cosmids, phagemids M13,	13
	biology	shuttle vectors, YAC vectors,	
		expression vectors pET - 4	
		Lectures; Gene cloning-Isolation	
		and purification of DNA; Isolation	
		of gene of interest: Restriction	
		\mathcal{C}	
		digestion, electrophoresis, blotting,	
		cutting, and joining DNA, methods	
		of gene transfer in prokaryotes and enkaryotes - 3 Lectures	
		cakaryotes 5 Ecctares,	
		Recombinant selection and	
		screening methods: genetic,	
		immunochemical, Southern and	
		Western analysis, nucleic acid	
		hybridization, HART,HRT- 2	
		Lectures; Expression of cloned	
		DNA molecules and maximization	
		of expression - 2 Lectures;	
		Cloning strategies-genomic DNA	
		libraries, cDNA libraries,	
		chromosome walking and jumping –	
		4 Lectures	
IV	Gene sequencing and	Maxam Gilbert's method, Sanger's	15
	editing	dideoxy method, Automated DNA	
		sequencing, Pyrosequencing - 6	
		Lectures; Human genome mapping	
		and its implications in health and	
		disease - 3 Lectures;	
		RNAi, ZNF(Zinc finger nucleases),	
		TALENS(Transcription Activator	
		Like Effector Nucleases),	
		CRISPER/Cas system(Clustered	
		Regularly Interspersed Repeats) - 6	
		Lectures	

- 1. iGenetics A Molecular Approach 3rd Edition Peter J. Russell.
- 2. Molecular Biotechnology-Principles and Applications of Recombinant DNA Technology 3rd Edition Glick B.R., Pasternak J.J., Patten C.L.
- 3. Principles of Gene Manipulation 7th Edition Primrose S.B., Twyman R.M.
- 4. Biotechnology 3rd Edition S.S. Purohit.
- 5. Genomes 3rd Edition T.A. Brown.
- 6. Biotechnology B.D. Singh.
- 7. Gene Cloning and DNA Analysis 6th Edition T.A. Brown.
- 8. Genomics Cantor C.R., and Smith C.L. John Wiley & Sons. (1999)

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

Question No.	Unit	Marks
1	I	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Marine Biotechnology
Course Code	USBT504
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

- CO1 To impart the knowledge of marine Biotechnology.
- CO2 To acquire the significance of marine functional foods, nutraceuticals, drugs, enzymes.
- CO3 To gain the role of marine bioresources in cosmetics.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Marine Biotechnology	Introduction to Marine	15
	 Introduction and 	Biotechnology- 1 lecture;	
	Bioprospecting	The marine ecosystem and its	
		functioning: intertidal, estuarine,	
		salt marsh, mangrove, coral reef,	
		coastal &deep sea ecosystems.	
		Hydrothermal vents- 4 lectures;	
		Bioprospecting, Marine Microbial	
		Habitats and Their	
		Biotechnologically relevant	
		Microorganisms- 2 lectures;	
		Methods for Microbial	
		Bioprospecting in Marine	
		Environments - 2 lectures;	
		Biotechnological Potential of	
		Marine Microbes -1 lecture;	
		Bioactive compounds from other	
		Marine Organisms: fungi,	
		Microalgae, Seaweeds,	
		Actinomycetes, sponges - 5 lectures	
II	Marine drugs and	Drugs from Marine organisms:	15
	enzymes	Pharmaceutical compounds from	
		marine flora and fauna - marine	

		, , , , , , , , , , , , , , , , , , , ,	
		toxins, antiviral and antimicrobial	
		agents – 4 lectures;	
		Approved Marine Drugs as	
		Pharmaceuticals – 2 lecture;	
		Marine Natural products and its	
		Challenges – 2 lectures;	
		Marine Microbial Enzymes- Marine	
		Extremozymes and Their	
		Significance, Current Use of Marine	
		Microbial Enzymes – 7 lectures.	
III	Marine functional	Marine Functional Foods:	15
	foods and	Marine Sources as Healthy Foods or	
	nutraceuticals	Reservoirs of Functional Ingredients	
		-3 lectures;	
		Marine-Derived Ingredients with	
		Biological Properties- 3 lectures;	
		Functional Foods Incorporating	
		Marine-Derived Ingredients -2	
		lectures; Marine Nutraceuticals:	
		Marine Bioactives as Potential	
		Nutraceuticals, Functional	
		Carbohydrates, Polyunsaturated	
		Fatty Acids- 3 lectures;	
		Carotenoids, Soluble Calcium, Fish	
		Collagen and Gelatin, Marine	
		Probiotics -4 lectures.	
IV	Marine Bioresources	Marine Bioresources, Marine	15
1 4	and Cosmetics	Secondary Metabolites, Marine	13
	and Cosmeties	Proteins, Marine Lipids- 4 lectures;	
		Cosmetics from Marine Sources:	
		Scenario of Marine Sources in the	
		Cosmetic Industry, Cosmetics:	
		Definition and Regulations,	
		Cosmeceuticals, Target Organs and	
		Cosmetics Delivery Systems,	
		Components of Cosmetics, Major	
		Functions of Some Marine	
		Components in Cosmetics and	
		Cosmeceuticals , Treatments Based	
		on Marine Resources, Products	
		Based on Marine Resources - 11	
		lectures.	

- 1. Kim, S.K. Springer Handbook of Marine Biotechnology; Springer: Berlin, Germany; Heidelberg, Germany, 2015.
- 2. Nollet, Leo M. L- Marine microorganisms- extraction and analysis of bioactive compounds-CRC Press_Taylor& Francis (2017)
- 3. R. S. K. Barnes, R. N. Hughes (auth.)-An Introduction to Marine Ecology, Third Edition Wiley-Blackwell (1999)
- 4. Blanca Hernández-Ledesma, Miguel Herrero-Bioactive Compounds from Marine Foods-Plant and Animal Sources-Wiley-Blackwell (2013)
- 5. Fabio Rindi, Anna Soler-Vila, Michael D. Guiry (auth.), Maria Hayes (eds.)-Marine Bioactive Compounds_ Sources, Characterization and Applications-Springer US (2012)
- 6. W. Evans-Trease and Evans Pharmacognosy 15th ed.-Saunders (2010)

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

Question No.	Unit	Marks
1	I	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Applied Component – Biosafety
Course Code	USACBT501
Class	T. Y. B. Sc.
Semester	V
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

CO1 – To impart the knowledge of Biosafety practices.

CO2 – To provide the knowledge about detection and testing of contaminants.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Introduction to	Introduction - 1 lecture Biological	15
	biosafety	Risk Assessment, Hazardous	
		Characteristics of an Agent- 2	
		lectures; Genetically modified	
		agent hazards – 1 lecture; Cell	
		cultures - 1 lecture; Hazardous	
		Characteristics of Laboratory	
		Procedures – 1 lecture; Potential	
		Hazards Associated with Work	
		Practices – 2 lectures; Safety	
		Equipment and Facility Safeguards -	
		2 lectures; Pathogenic risk and	
		management - 2 lectures	
II	GLP	Concept of GLP- 1 lectures;	15
		Practicing GLP- 1 lecture;	
		Guidelines to GLP - 2 lectures;	
		Documentation of Laboratory work	
		- 1 lectures; Preparation of SOPs -	
		2 lectures; Calibration records - 1	
		lectures; Validation of methods - 1	
		lectures; Documentation of results	
		– 1 lecture ; Audits & Audit reports	
		- 1 lecture.	
III	Detection and testing	Microbial Contamination in food	15
	of contaminants	and pharma product - 3 lectures;	

		Some common microbial	
		contaminants - 3 lectures;	
		Microbiological Assays for	
		pharmaceutical products – 4	
		lectures; Regulatory	
		Microbiological testing in	
		pharmaceuticals - 3 lectures.	
IV	Biosafety in	Concepts on biosafety in	15
	Biotechnology	Biotechnology - 2 lectures;	
		Regulating rDNA technology -2	
		lectures;	
		Regulating food and food	
		ingredients -3 lectures;	
		Genetically engineered crops,	
		livestock Bioethics -3 lectures;	
		Contemporary issues in Bioethics -	
		2 lectures.	

- 1. Pharmaceutical Microbiology Hugo, W.B, Russell, A.D 6th edition Oxford Black Scientific Publishers.
- 2. Biosafety in Microbiological and Biomedical Laboratories 5th Edition, L. Casey Chosewood Deborah E. Wilson U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Institutes of Health.
- 3. Molecular Biotechnology –Principles and Applications of Recombinant DNA Glick, B.R, Pasternak, J.J Patten, C.L 3rd edition ASM press

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

Question No.	Unit	Marks
1	I	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Practicals of USBT501 and USBT502
Course Code	USBTP501
Class	T. Y. B. Sc.
Semester	V
No. of Credits	03
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to cell biology.

CO2 - To impart knowledge and hands on experience of the various practicals related to medical microbiology and instrumentation.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Separation of components from a mixture using Affinity	72
Practicals	chromatography (Kit may be used)	
	2. Separation of components from a mixture using ion	
	exchange chromatography (Kit may be used)	
	3. Separation of components from a mixture using Size	
	exclusion chromatography (Kit may be used)	
	4. HPLC method validation.	
	5. MIC and MLC of any one antibiotic	
	6. Antibiotic sensitivity test using agar cup method	
	7. Antibiotic sensitivity test using paper disc method	
	8. Antibiotic sensitivity test using ditch method.	
	9. Book review (Emperor of all Maladies)	
Demonstration	Chick embryo candling and inoculation methods	
Practical	Demonstration experiment	
Visit	Cancer Biology: (Field visit and 2 page report in the journal)	

- 1. Molecular Biology of the Cell, 5th Edition (2007) Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA
- 2. Cell Biology, 6th edition, (2010) Gerald Karp. John Wiley & Sons., USA
- 3. The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman, Sinauer Associates, Inc. USA
- 4. Developmental Biology; Scott Gilbert; 9th Edition
- 5. Principles and techniques in biochemistry and molecular biology (2010), Keith Wilson and John Walker, 7th edition, Cambridge University Press
- 6. HPLC method validation for pharmaceuticals: a review (2013), Harshad V. Paithankar, International Journal of Universal Pharmacy and Bio Sciences 2(4): July-August.
- 7. Mim's Medical Microbiology 5th edition
- 8. Microbiology by Prescott Harley and Klein 5th edition Mc Graw Hill

Evaluation Pattern

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
TY	3	06 hrs	60 M (01	40 M	100
Practical	experiments		Paper)	(10 M for	
	of 2 hrs		(20 M for 1	Journal, 10 M	
	duration		Experiment,	for Book	
			25 M for 1	Review, 10	
			Experiment,	M for viva,	
			15 M for 1	05 M	
			Experiment,)	Identification/	
				Spotting, 05	
				M for overall	
				performance)	

Name of the Course	Practicals of USBT503 and USBT504
Course Code	USBTP502
Class	T. Y. B. Sc.
Semester	V
No. of Credits	03
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

- CO1 To impart knowledge and hands on experience of the various practicals related to genomes and molecular biology.
- CO2 To impart knowledge and hands on experience of the various practicals related to marine Biotechnology.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Transformation in <i>E. coli</i> .	72
Practicals	2. Genomic DNA Extraction: Animal cells.	
	3. Restriction enzyme digestion and ligation (Kit may be used).	
	4. Gradient plate technique	
	5. Bacterial gene expression (Kit may be used).	
	6. Study of any 5 marine bacteria and algae (Macro and micro)	
	7. DPPH assay for antioxidant extracted from marine algae	
	8. Extraction of carotenoids from marine algae/Bacteria/Fungi	
	9. Extraction and estimation of Gelatin / Collagen.	
	10. Extraction of alkaloids from marine organisms and their	
	separation by TLC.	
Demonstration	1. Phage titration: Demonstration]
Practicals	2. Polymerase chain reaction. Demonstration	

- 1. Molecular Biotechnology-Principles and Applications of Recombinant DNA Technology 3rd Edition Glick B.R., Pasternak J.J., Patten C.L.
- 2. Gene Cloning and DNA Analysis 6th Edition T.A. Brown.

- 3. Genomics Cantor C.R., and Smith C.L. John Wiley & Sons. (1999)
- 4. Kim, S.K. Springer Handbook of Marine Biotechnology; Springer: Berlin, Germany; Heidelberg, Germany, 2015.
- 5. Nollet, Leo M. L- Marine microorganisms- extraction and analysis of bioactive compounds-CRC Press Taylor & Francis (2017)
- 6. R. S. K. Barnes, R. N. Hughes (auth.)-An Introduction to Marine Ecology, Third Edition Wiley-Blackwell (1999)

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
TY	3	06 hrs	60 M (01	40 M	100
Practical	experiments		Paper)	(10 M for	
	of 2 hrs		(20 M for 1	Journal, 10 M	
	duration		Experiment,	for viva, 15	
			25 M for 1	M for	
			Experiment,	Identification/	
			15 M for 1	Spotting, 05	
			Experiment)	M for overall	
				performance)	

Name of the Course	Practicals of USACBT501
Course Code	USACBTP503
Class	T. Y. B. Sc.
Semester	V
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to biosafety.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Validation of micropipette, measuring cylinders, colorimeters	48
Practicals	2. Calibration of pH meter and weighing balance	
	3. Vitamin B12 bioassay	
	4. Testing for adulterants in food; ex. Starch in milk	
	5. Making SOP for any 2 major laboratory instruments	
	6. Sterility of injectables	

- 1. Pharmaceutical Microbiology Hugo, W.B, Russell, A.D 6th edition Oxford Black Scientific Publishers.
- 2. Biosafety in Microbiological and Biomedical Laboratories 5th Edition, L. Casey Chosewood Deborah E. Wilson U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Institutes of Health.
- 3. Molecular Biotechnology –Principles and Applications of Recombinant DNA Glick, B.R, Pasternak, J.J Patten, C.L 3rd edition ASM press

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
TY	4	6 hrs	60 M	40 M	100
Practical	experiments		(20 M each	(10 M for	
(AC)	of 1.5 hrs		for 2	Journal, 10 M	
	duration		Experiments,	for SOP	
			10 M each for	Writing, 10	
			2	M for Viva,	
			Experiments)	05 M for	
				Identification,	
				05 M for	
				overall	
				performance)	

Name of the Course	Biochemistry
Course Code	USBT601
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

CO1 – To impart the knowledge of protein biochemistry and metabolism.

CO2 – To provide the insight of endocrinology and nutrition.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Protein Biochemistry	Protein structure: Protein Tertiary and Quaternary Structures -2	15
		Lectures; Protein Denaturation and	
		Folding – 3 Lectures; Protein	
		Function: Reversible Binding of a	
		Protein to a Ligand: Oxygen	
		Binding Proteins – 2 Lectures;	
		Complementary Interactions	
		between Proteins and Ligands:	
		Immunoglobulins – 1 Lecture;	
		Protein Interactions Modulated by	
		1	
		Chemical Energy: Actin, Myosin,	
		and Molecular Motors -3 Lectures;	
TT	34 1 1	Protein purification – 4 Lectures.	1.5
II	Metabolism	Carbohydrate biosynthesis and its	15
		regulation: Peptidoglycan in	
		Bacteria -2 Lectures; Starch and	
		sucrose in Plants -4 Lectures;	
		Glycogen in Animals - 4 Lectures;	
		Biosynthesis and regulation of	
		Cholesterol, Atherosclerosis – 5	
		Lectures.	
III	Endocrinology	Mechanism of action of group I and	15
		II hormones- 1 Lecture; Structure,	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 26 | Page

	T		
		storage, release, transport,	
		biochemical functions and disorders	
		associated with hormones secreted	
		by Hypothalamus -1 Lecture;	
		Anterior Pituitary gland - GH,	
		stimulating hormones) -1 Lecture;	
		Posterior Pituitary gland – oxytocin	
		and vasopressin -1 Lecture;	
		Thyroid gland – Thyroxine,	
		calcitonin – 2 Lectures ; Parathyroid	
		gland – PTH -1 Lecture; Adrenal	
		medulla – epinephrine and	
		norepinehprine -1 Lecture; Adrenal	
		cortex – Glucocortocoids – 1	
		Lecture; Pancreas – insulin and	
		glucagon – 2 Lectures; Female	
		Gonads – estrogen and progesterone	
		- 2 Lectures; Male gonads -	
		testosterone- 1 Lecture; Placenta –	
		hCG - 1 Lecture.	
IV	Nutrition	Minerals and Vitamins; Dietary	15
		sources, bioactive form, functions	
		and disorders associated with fat	
		soluble (A D E K) and water soluble	
		vitamins- 7 Lectures; Minerals -	
		physiological and biochemical	
		functions of principal and trace	
		elements. – 7 Lectures;	
		Malnutrition – Over nutrition	
		(obesity) and PEM (Kwashiorkor	
		and Marasmus)- 1 Lecture.	

- 1. Lehninger, principles of biochemistry, 4th edition (2005), David Nelson and Michael Cox W.H. Freeman and Company, New York.
- 2. Biochemistry, 4th edition (2010), Voet and Voet, John Wiley and sons, USA
- 3. Harper's Illustrated Biochemistry, 27th edition, RK Murray, DK Granner, PA Mayes and VW Rodwell, McGraw Hills publication.

- 4. Biochemistry, 4nd edition (2017), Satyanarayana and Chakrapani, Books & Allied (P) Ltd
- 5. Nutrition Science, 6th edition (2017), Srilakshmi, new age international publishers.

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

Question No.	Unit	Marks
1	I	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Industrial Microbiology
Course Code	USBT602
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

CO1 – To impart the knowledge of dairy technology.

CO2 – To gain the detailing of fermentation processes.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Dairy technology	Milk: Normal flora, changes in raw	15
		milk - 2 lectures; Enumeration - 1	
		lecture ; Factors affecting	
		bacteriological quality - 1 lecture;	
		Dairy technology Preservation	
		methods - 2 lectures;	
		Pasteurization- 1 lecture; Starter	
		Cultures - 2 lectures; Fermented	
		products-Production process and	
		spoilage of Cheese: Swiss and	
		Cheddar - 2 lectures; Butter - 2	
		lectures; Yogurt - 1 lectures and	
		Buttermilk - 1 lecture.	
II	Down-stream	Introduction of DSP - 2 lectures;	15
	processing (DSP)	Foam separation - 1 lecture; Types	
		of Precipitation - 1 lecture;	
		Filtration 2 lectures, Centrifugation	
		- 1 lecture; Chromatography in	
		DSP - 2 lectures; Cell disruption-	
		physical and chemical methods - 2	
		lectures; Solvent recovery,	
		Membrane processes - 1 lecture;	
		Drying – 1 lecture;	
		Crystallization and Whole broth	

		processing - 2 lectures.	
III	Fermentation process	Introduction to Inoculum	15
	_	development - 2 lectures; Bacterial	
		and fungal inoculum development	
		with one example each - 3 lectures,	
		scale up, scale down - 2 lectures;	
		Production of: Streptomycin – 1	
		lecture; Protease – 1 lecture;	
		Mushroom - 1 lecture; Glutamic	
		acid - 1 lecture; Lysine – 1 lecture,	
		ethanol production 1 lecture Semi-	
		synthetic Penicillin 1 lecture,	
		Biotransformation - 1 lecture.	
IV	QA-QC	Concept of GMP- 1 Lectures;	15
		Requirements of GMP	
		implementation - 2 Lectures;	
		Documentation of GMP practices –	
		2 Lectures ; Regulatory certification	
		of GMP - 2 Lectures; Quality	
		Control (QC): Concept of QC - 2	
		Lectures;	
		Requirements for implementing QC	
		- 2 Lectures; QA concepts: Concept	
		of QA - 2 Lectures; Requirements	
		for implementing - 2 Lectures.	

- 1. Applied Dairy Microbiology Elmer H Marth and James L Steele Mercel Dekker Inc New York, 2nd edition
- 2. Microbial Technology Peppler, H.J and Perlman, D 2nd Academic Press Practicals
- 3. Industrial Microbiology Prescott and Dunn CBS publishers
- 4. Dairy technology by Yadav and Grower
- 5. Fermentation technology by Stanbury and Whittkar
- 6. Pharmaceutical Microbiology by Russel and Hugo

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

Question	Unit	Marks
No.		
1	I	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Pharmacology and Neurochemistry
Course Code	USBT603
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

CO1 – To impart the knowledge of general principles of pharmacology.

CO2 – To provide the knowledge of neurochemistry.

CO3 – To gain the knowledge of basic and regulatory toxicology.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	General principles of	Mechanism of drug action - 2	15
	pharmacology	Lectures; drug receptors and	
		biological responses – 2 Lectures;	
		second-messenger systems, the	
		chemistry of drug-receptor binding	
		- 2 Lectures; dose-response	
		relationship: therapeutic index - 3	
		Lectures; ED, LD, - 2 Lectures;	
		Potency and Intrinsic Activity – 2	
		Lectures ; Drug antagonism – 2	
		Lectures.	
II	Drug absorption and	Absorption of drugs from the	15
	distillation	alimentary tract - 2 Lectures;	
		factors affecting rate of	
		gastrointestinal absorption – 2	
		Lectures ; absorption of drugs from	
		lungs - 1 Lecture; skin - 1 Lecture;	
		absorption of drugs after parenteral	
		administration factors influencing	
		drug distribution – 2 Lectures;	
		binding of drugs to plasma proteins	
		- 2 Lectures; Physiological barriers	
		to drug distribution – 3 Lectures.	

III	Basic toxicology and	Background Definitions - 1	15
	regulatory toxicology	Lectures; Causation: degrees of	
		certainty Classification - 1	
		Lectures; Causes Allergy in	
		response to drugs Effects of	
		prolonged administration: chronic	
		organ toxicity - 2 Lectures;	
		Adverse effects on reproduction - 1	
		Lecture; Poisons: Deliberate and	
		accidental self-poisoning Principles	
		of treatment Poison-specific	
		measures General measures - 2	
		Lectures; Specific poisonings:	
		cyanide, methanol, ethylene glycol,	
		hydrocarbons, volatile solvents,	
		heavy metals, - 3 Lectures;	
		herbicides and pesticides, - 2	
		Lectures; biological substances	
		(overdose of medicinal drugs is	
		dealt with under individual agents) -	
		1 Lecture; Incapacitating agents:	
		drugs used for torture - 1 Lecture;	
		Nonmedical use of drugs – 1	
		Lecture.	
IV	Neurochemistry	Anatomy and functioning of the	15
		brain – 2 Lectures; Neuronal	
		pathways - 2 Lectures; Propogation	
		of nerve impulses - 2 Lectures;	
		Neuronal excitation and inhibition –	
		3 Lectures; Synapses and gap	
		junctions - 3 Lectures; Action of	
		Neuro toxins and neurotransmitters	
		- 3 Lectures.	

- 1. Textbook of Medical Physiology Guyton, A.C and Hall 11th edition J.E Saunders
- 2. Modern Pharmacology with clinical Applications Craig, C.R, Stitzel, R. E 5th edition
- 3. Clinical Pharmacology Bennet, PN, Brown, M.J, Sharma, P 11th edition Elsevier
- 4. Biochemistry Metzler, D.E Elsevier

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

Question No.	Unit	Marks
1	I	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Environmental Biotechnology
Course Code	USBT604
Class	T. Y. B. Sc.
Semester	V
No. of Credits	2.5
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

CO1 – To impart the knowledge of renewable sources of energy.

CO2 – To understand the industrial effluent treatment.

CO3 – To gain knowledge about wastewater treatments.

CO4 – To provide the understanding of hazardous waste management.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Renewable sources of	Energy sources renewable – solar	15
	energy	energy, wind power, geothermal	
		energy and hydropower, biomass	
		energy - 5 Lectures ; Biogas	
		technology- biogas plant & types,	
		biodigester. Biogas- composition,	
		production and factors affecting	
		production, uses – 5 Lectures;	
		Biofuels – ethanol production.	
		Microbial hydrogen production	
		Biodiesel, Petrocrops - 5 Lectures	
II	Industrial effluent	Biological processes for industrial	15
	treatment	effluent treatment, aerobic	
		biological treatment- activated	
		sludge process, CASP, advanced	
		activated sludge processes (any two)	
		Biological filters, RBC, FBR - 5	
		Lectures;	
		Anaerobic biological treatment-	
		contact digesters, packed bed	
		reactors, anaerobic baffled digesters,	

	1	TILOD OF A	
		UASB - 3 Lectures;	
		Solid waste treatment - 2 Lectures;	
		pollution indicators & biosensors - 2	
		Lectures; biodegradation of	
		xenobiotics- persistent compounds,	
		chemical properties influencing	
		biodegradability, microorganisms in	
		biodegradation - 2 Lectures; Use of	
		immobilized enzymes or microbial	
		cells for treatment - 1 Lecture.	
III	Wastewater treatment	Wastewater treatment- introduction,	15
		biological treatment, impact of	
		pollutants on biotreatment, use of	
		packaged organisms and genetically	
		engineered organisms in waste	
		treatment – 5 Lectures; Heavy	
		metal pollution – sources, microbial	
		systems for heavy metal	
		accumulation, techniques used for	
		heavy metal removal – 5 Lectures;	
		biosorption by bacteria, fungi and	
		algae, factors affecting biosorption	
		limitations of biosorption - 5	
		Lectures.	
IV	Hazardous waste	Biodegradation of waste from	15
	management	tanning industry - 2 Lectures;	
		petroleum industry - 2 Lectures;	
		paper & pulp industry - 2 Lectures;	
		Dairy – 2 Lectures; Distillery - 2	
		Lectures; Dye – 1 Lecture;	
		Antibiotic industry - 2 Lectures;	
		Removal of oil spillage & grease	
		deposits – 2 Lectures.	

- 1. Environmental Biotechnology Allan Scragg Oxford University press
- 2. Environmental Biotechnology (Basic concepts and applications) Indu Shekar Thakur IK International
- 3. Environmental Biotechnology (Industrial pollution management) S.N. Jogdand Himalaya Publishing House

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

Question No.	Unit	Marks
1	I	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Applied Component – Agribiotechnology
Course Code	USACBT601
Class	T. Y. B. Sc.
Semester	V
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

- CO1 To impart the knowledge of precision agriculture and agricultural systems.
- CO2 To provide understanding of plant stress biology.
- CO3 To explore the significance of molecular markers in plant breeding.
- CO4 To gain knowledge about the importance of biofertilizers and biopesticides.

Curriculum:

Unit	Title	Learning Points	No. of Lectures
I	Precision agriculture	Introduction to Agriculture and	15
	and agricultural	Agriculture systems- 1 Lecture;	
	systems	Green-house Technology Types of	
		green house, importance, functions	
		and features of green house, Design	
		criteria and calculation -2 Lectures;	
		Construction material, covering	
		material and its characteristics,	
		growing media, green house	
		irrigation system. Nutrient	
		management -3 Lectures;	
		Greenhouse heating, cooling and	
		shedding and ventilation system,	
		Computer controlled environment –	
		3 Lectures ;, Phytotrons, fertigation	
		and roof system -1 Lecture;	
		Precision Cultivation- tools, sensors	
		for information acquisition -2	
		Lectures.	
II	Plant stress biology	Abiotic stress – Physiological and	15
		molecular responses of plants to	
		water stress, salinity stress,	

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 38 | Page

	T		
		temperature stress – heat and cold,	
		Photooxidative stress, stress	
		perception and stress signalling	
		pathways, Ionic and osmotic	
		homeostasis, reactive oxygen	
		species scavenging- 4 Lectures;	
		Biotic stress - plant interaction with	
		bacterial, viral and fungal	
		pathogens, plant responses to	
		pathogen— biochemical and	
		molecular basis of host-plant	
		1	
		resistance, toxins of fungi and	
		bacteria , systemic and induced	
		resistance –pathogen derived	
		resistance, signalling - 8 Lectures.	1.2
III	Molecular markers in	Genetic markers in plant breeding -	15
	plant breeding	Classical markers, DNA markers	
		(RFLP, RAPD, AFLP, SSR, SNP)-	
		4 Lectures;	
		Application of Molecular Markers	
		to Plant Breeding [quantitative trait	
		locus (QTL) mapping] - 4 Lectures;	
		Plant DNA Barcoding- Barcoding	
		Markers (matK, rbcl, ITS,	
		tmHpsbA), steps, recent advances,	
		Benefits, Limitations - 4 Lectures.	
IV	Biofertilizers and	Biofertilizer: Nitrogen-fixing	15
	biopesticides	Rhizobacteria - Symbiotic Nitrogen	
	biopesticides	Fixers -2 Lectures; Non-symbiotic	
		Nitrogen Fixers Plant Growth	
		Promoting Microorganisms-	
		Phosphate- Solubilizing Microbes	
		(PSM), Phytohormones and	
		Cytokinins, Induced Systemic	
		Resistance- 2 Lectures;	
		Plant Growth Promotion by Fungi	
		Mycorrhizae Arbuscular	
		Mycorrhizae Ectomycorrhizae -2	
		Lectures; Microbial Inoculants	
		Inocula, Carriers, and Applications,	
		Monoculture and Co-culture	
		Inoculant Formulations Biocontrol,	
		Polymicrobial Inoculant	
		Formulations-3 Lectures;	
		Biopesticides – types, Bacillus	
L	<u> </u>	Transition types, Buchius	<u> </u>

thuringiensis, insect viruses and	
entomopathogenic fungi	
(characteristics, physiology,	
mechanism of action and	
application) - 3 Lectures.	

- 1. M. Ajmal Ali, G. Gyulai, F. Al-Hemaid -Plant DNA Barcoding and Phylogenetics, LAP Lambert Academic Publishing (2015)
- 2. P. Parvatha Reddy (auth.)-Sustainable Crop Protection under Protected Cultivation-Springer Singapore (2016)
- 3. S.B. Anderson (ed.), Plant Breeding from Laboratories to Fields, InTech, 2013
- 4. Henry Leung, Subhas Chandra Mukhopadhyay (eds.) Intelligent Environmental Sensing (2015, Springer International Publishing)
- 5. Travis R. Glare, Maria E. Moran-Diez Microbial-Based Biopesticides_ Methods and Protocols (2016, Humana Press)
- 6. Altieri, Miguel A.Farrell, John G-Agroecology- The Science of Sustainable Agriculture, Second Edition-CRC Press (2018)
- 7. Arie Altman, Paul Michael Hasegawa-Plant Biotechnology and Agriculture_ Prospects for the 21st Century-Academic Press (2011)

Evaluation Pattern

A. Internal Evaluation

Method	Marks
Class Test/ Online Examination	20
Assignment	10
Overall Performance	10

Question	Unit	Marks
No.		
1	I	Unit I questions 12 M
2	II	Unit II questions 12 M
3	III	Unit III questions 12 M
4	IV	Unit IV questions 12 M
5	All Units	Short notes (03 out of 04) 12 M

Name of the Course	Practicals of USBT601 and USBT602
Course Code	USBTP601
Class	T. Y. B. Sc.
Semester	V
No. of Credits	03
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

- CO1 To impart the knowledge and hands on experience of the various practicals related to biochemistry.
- CO2 To impart the knowledge and hands on experience of the various practicals related to industrial microbiology.

Curriculum:

Title	Learning Points	No. of Lectures			
Regular	1. Estimation of Milk protein-Pynes method	72			
Practicals	2. Microbial analysis of Milk by MBRT and RRT				
	3. Phosphatase test in Milk				
	4. DMC of milk sample				
	5. Isolation of Normal flora from Milk and curd				
	6. Determination of blood glucose levels for detection of				
	diabetes mellitus.				
	7. Determination of serum cholesterol (total, HDL and LDL				
	ratio)				
	8. Estimation vitamin C by DCPIP method from food samples.				

Learning Resources recommended:

- 1. Harper's Illustrated Biochemistry, 27th edition, RK Murray, DK Granner, PA Mayes and VW Rodwell, McGraw Hills publication.
- 2. Biochemistry, 4nd edition (2017), Satyanarayana and Chakrapani, Books & Allied (P) Ltd
- 3. Nutrition Science, 6th edition (2017), Srilakshmi, new age international publishers.
- 4. Applied Dairy Microbiology Elmer H Marth and James L Steele Mercel Dekker Inc New York, 2nd edition

Board of Examinations and Evaluation, R. P. Gogate College of Arts & Science and R. V. Jogalekar College of Commerce, Ratnagiri (Autonomous) 41 | Page

- 5. Industrial Microbiology Prescott and Dunn CBS publishers
- 6. Dairy technology by Yadav and Grower

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
TY	3	06 hrs	60 M (01	40 M	100
Practical	experiments		Paper)	(10 M for	
	of 2 hrs		(20 M for 1	Journal, 10 M	
	duration		Experiment,	for viva, 15	
			25 M for 1	M for	
			Experiment,	Identification/	
			15 M for 1	Spotting, 05	
			Experiment)	M for overall	
				performance)	

Name of the Course	Practicals of USBT603 and USBT604
Course Code	USBTP602
Class	T. Y. B. Sc.
Semester	V
No. of Credits	03
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to pharmacology, neurochemistry, environmental Biotechnology.

CO2 – To improve skills in writing the research outcomes in the form of thesis dissertation.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. LD 50, ED 50 evaluation using suitable models e.g. daphnia	72
Practicals	2. Study the effect of heavy metals on the growth of bacteria.	
	3. Determination of Total Solids from an effluent sample.	
	4. Study of physico-chemical (pH, color, turbidity, BOD,	
	COD) parameters of any one industrial effluent sample	
Demonstration	Estimation of chromium from Effluents (Demonstration)	
Visit	Visit to ETP/ CET	

- 1. Textbook of Medical Physiology Guyton, A.C and Hall 11th edition J.E Saunders
- 2. Modern Pharmacology with clinical Applications Craig, C.R, Stitzel, R.E 5th edition
- 3. Clinical Pharmacology Bennet, PN, Brown, M.J, Sharma, P 11th edition Elsevier
- 4. Biochemistry Metzler, D.E Elsevier
- 5. Environmental Biotechnology Allan Scragg Oxford University press
- 6. Environmental Biotechnology (Basic concepts and applications) Indu Shekar Thakur IK International

	No. of	Duration	Total Marks	CIE	Total
	Experiments				
TY	3	06 hrs	60 M (01	40 M	100
Practical	experiments		Paper)	(10 M for	
	of 2 hrs		(20 M for 1	Journal, 10 M	
	duration		Experiment,	for viva, 15	
			25 M for 1	M for	
			Experiment,	Identification/	
			15 M for 1	Spotting, 05	
			Experiment)	M for overall	
				performance)	

Name of the Course	Practicals of USACBT601
Course Code	USACBTP603
Class	T. Y. B. Sc.
Semester	V
No. of Credits	02
Nature	Theory/ Practical/ Project/ other (please specify)
Type	Core/ Elective

Course Outcomes:

CO1 - To impart knowledge and hands on experience of the various practicals related to agribiotechnology.

Curriculum:

Title	Learning Points	No. of Lectures
Regular	1. Isolation of Rhizobium	48
Practicals	2. Isolation of Azotobacter	
	3. Isolation of Phosphate solubilizing bacteria	
	4. Study of effect of abiotic stress on plants.	
	6. Rapid screening tests for abiotic stress tolerance (drought, -	
	PEG, Mannitol & salinity NaCl)	
	7. Estimation of antioxidants and antioxidant enzymes -	
	Ascorbate, Catalase and Peroxidase	
Demonstration	RAPD analysis demonstration experiment	
Visit	Visit to green house facility and submission of field visit	
	report.	

- 1. M. Ajmal Ali, G. Gyulai, F. Al-Hemaid -Plant DNA Barcoding and Phylogenetics, LAP Lambert Academic Publishing (2015)
- 2. P. Parvatha Reddy (auth.)-Sustainable Crop Protection under Protected Cultivation-Springer Singapore (2016)
- 3. S.B. Anderson (ed.), Plant Breeding from Laboratories to Fields, InTech, 2013

- 4. Henry Leung, Subhas Chandra Mukhopadhyay (eds.) Intelligent Environmental Sensing (2015, Springer International Publishing)
- 5. Travis R. Glare, Maria E. Moran-Diez Microbial-Based Biopesticides_ Methods and Protocols (2016, Humana Press)
- 6. Altieri, Miguel A.Farrell, John G-Agroecology- The Science of Sustainable Agriculture, Second Edition-CRC Press (2018)
- 7. Arie Altman, Paul Michael Hasegawa-Plant Biotechnology and Agriculture_ Prospects for the 21st Century-Academic Press (2011)

	No. of Experiments	Duration	Total Marks	CIE	Total
TY Practical (AC)	experiments of 1.5 hrs duration	6 hrs	60 M (20 M each for 2 Experiments, 10 M each for 2 Experiments)	40 M (10 M for Journal, 10 M for Viva, 10 M for Identification, 10 M for overall performance)	100

(Rashmi A. Bhave)
The Chairperson, BoS